1,001 research outputs found

    Can Patience Account for Subnational Differences in Student Achievement?

    Get PDF
    Decisions to invest in human capital depend on people’s time preferences. We show that differences in patience are closely related to substantial subnational differences in educational achievement, leading to new perspectives on longstanding within-country disparities. We use social-media data – Facebook interests – to construct novel regional measures of patience within Italy and the United States. Patience is strongly positively associated with student achievement in both countries, accounting for two-thirds of the achievement variation across Italian regions and one-third across U.S. states. Results also hold for six other countries with more limited regional achievement data

    The aerosol-climate model ECHAM5-HAM

    Get PDF
    The aerosol-climate modelling system ECHAM5-HAM is introduced. It is based on a flexible microphysical approach and, as the number of externally imposed parameters is minimised, allows the application in a wide range of climate regimes. ECHAM5-HAM predicts the evolution of an ensemble of microphysically interacting internally- and externally-mixed aerosol populations as well as their size-distribution and composition. The size-distribution is represented by a superposition of log-normal modes. In the current setup, the major global aerosol compounds sulfate (SU), black carbon (BC), particulate organic matter (POM), sea salt (SS), and mineral dust (DU) are included. The simulated global annual mean aerosol burdens (lifetimes) for the year 2000 are for SU: 0.80 Tg(S) (3.9 days), for BC: 0.11 Tg (5.4 days), for POM: 0.99 Tg (5.4 days), for SS: 10.5 Tg (0.8 days), and for DU: 8.28 Tg (4.6 days). An extensive evaluation with in-situ and remote sensing measurements underscores that the model results are generally in good agreement with observations of the global aerosol system. The simulated global annual mean aerosol optical depth (AOD) is with 0.14 in excellent agreement with an estimate derived from AERONET measurements (0.14) and a composite derived from MODIS-MISR satellite retrievals (0.16). Regionally, the deviations are not negligible. However, the main patterns of AOD attributable to anthropogenic activity are reproduced

    monthly averaged anthropogenic aerosol direct radiative forcing over the mediterranean based on aeronet aerosol properties

    Get PDF
    Abstract. The all-sky direct radiative effect by anthropogenic aerosol (DREa) is calculated in the solar (0.3–4 μm) and infrared (4–200 μm) spectral ranges for six Mediterranean sites. The sites are differently affected by pollution and together reflect typical aerosol impacts that are expected over land and coastal sites of the central Mediterranean basin. Central to the simulations are aerosol optical properties from AERONET sun-/sky-photometer statistics for the year 2003. A discussion on the variability of the overall (natural + anthropogenic) aerosol properties with site location is provided. Supplementary data include MODIS satellite sensor based solar surface albedos, ISCCP products for high- mid- and low cloud cover and estimates for the anthropogenic aerosol fraction from global aerosol models. Since anthropogenic aerosol particles are considered to be smaller than 1 μm in size, mainly the solar radiation transfer is affected with impacts only during sun-light hours. At all sites the (daily average) solar DREa is negative all year round at the top of the atmosphere (ToA). Hence, anthropogenic particles produce over coastal and land sites of the central Mediterranean a significant cooling effect. Monthly DREa values vary from site to site and are seasonally dependent as a consequence of the seasonal dependence of available sun-light and microphysical aerosol properties. At the ToA the monthly average DREa is −(4±1) W m−2 during spring-summer (SS, April–September) and −(2±1) W m−2 during autumn-winter (AW, October–March) at the polluted sites. In contrast, it varies between −(3±1) W m−2 and −(1±1) W m−2 on SS and AW, respectively at the less polluted site. Due to atmospheric absorption the DREa at the surface is larger than at the ToA. At the surface the monthly average DREa varies between the most and the least polluted site between −(7±1) W m−2 and −(4±1) W m−2 during SS, and between −(4±3) W m−2 and −(1±1) W m−2 during AW. The DREa at infrared wavelengths is positive but negligible, especially at the ToA (<0.3 W m−2). The average of DREa monthly-means referring to all sites has allowed getting a ToA- and sfc-DREa yearly-mean value of −(3±2) and −(5±3) W m−2, respectively at solar wavelengths. Last data, even if refer to a particular year, indicate that the radiative energy-balance of Central Mediterranean land and coastal sites is quite affected by anthropogenic particles

    Cirrus microphysics and radiative transfer: A case study

    Get PDF
    During the Cirrus Intensive Field Operations of FIRE, data collected by the NCAR King Air in the vicinity of Wausau, WI on October 28 were selected to study the influence of cirrus cloud microphysics on radiative transfer and the role of microphysical approximations in radiative transfer models. The instrumentation of the King Air provided, aside from temperature and wind data, up-and downwelling broadband solar and infrared fluxes as well as detailed microphysical data. The aircraft data, supplied every second, are averaged over the 7 legs to represent the properties for that altitude. The resulting vertical profiles, however, suffer from the fact that each leg represents a different cloud column path. Based on the measured microphysical data particle size distributions of equivalent spheres for each cloud level are developed. Accurate radiative transfer calculations are performed, incorporating atmospheric and radiative data from the ground and the stratosphere. Comparing calculated to the measured up- and downwelling fluxes at the seven cloud levels for both the averaged and the three crossover data will help to assess the validity of particle size and shape approximation as they are frequently used to model cirrus clouds. Once agreement is achieved the model results may be applied to determine, in comparison to a cloudfree case, the influence of this particular cirrus on the radiation budget of the earth atmosphere system

    A Taste of Learning: A Collaborative Early Childhood Pilot Project at Grocery Stores

    Get PDF
    A Taste of Learning, a community initiative involving several collaborating agencies, has two primary foci: 1) To encourage healthy food decision-making at grocery stores and 2) to have families of young children engage in fun learning opportunities while grocery shopping. This paper provides an overview of the pilot project, which was implemented at two Remke Market stores, the preliminary findings, and the lessons learned from working with multiple partnering agencies

    Profiling of Saharan dust from the Caribbean to western Africa - Part 1: Layering structures and optical properties from shipborne polarization/Raman lidar observations

    Get PDF
    We present final and quality-assured results of multiwavelength polarization/Raman lidar observations of the Saharan air layer (SAL) over the tropical Atlantic. Observations were performed aboard the German research vessel R/V Meteor during the 1-month transatlantic cruise from Guadeloupe to Cabo Verde over 4500 km from 61.5 to 20 degrees W at 14-15 degrees N in April-May 2013. First results of the ship-borne lidar measurements, conducted in the framework of SALTRACE (Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment), were reported by Kanitz et al. (2014). Here, we present four observational cases representing key stages of the SAL evolution between Africa and the Caribbean in detail in terms of layering structures and optical properties of the mixture of predominantly dust and aged smoke in the SAL. We discuss to what extent the lidar results confirm the validity of the SAL conceptual model which describes the dust long-range transport and removal processes over the tropical Atlantic. Our observations of a clean marine aerosol layer (MAL, layer from the surface to the SAL base) confirm the conceptual model and suggest that the removal of dust from the MAL, below the SAL, is very efficient. However, the removal of dust from the SAL assumed in the conceptual model to be caused by gravitational settling in combination with large-scale subsidence is weaker than expected. To explain the observed homogenous (height-independent) dust optical properties from the SAL base to the SAL top, from the African coast to the Caribbean, we have to assume that the particle sedimentation strength is reduced and dust vertical mixing and upward transport mechanisms must be active in the SAL. Based on lidar observations on 20 nights at different longitudes in May 2013, we found, on average, MAL and SAL layer mean values (at 532 nm) of the extinction-to-backscatter ratio (lidar ratio) of 17 +/- 5 sr (MAL) and 43 +/- 8 sr (SAL), of the particle linear depolarization ratio of 0.025 +/- 0 : 015 (MAL) and 0.19 +/- 0.09 (SAL), and of the particle extinction coefficient of 67 +/- 45Mm(-1) (MAL) and 68 +/- 37Mm(-1) (SAL). The 532 nm optical depth of the lofted SAL was found to be, on average, 0.15 +/- 0.13 during the ship cruise. The comparably low values of the SAL mean lidar ratio and depolarization ratio (compared to typical pure dust values of 50-60 sr and 0.3, respectively) in combination with backward trajectories indicate a smoke contribution to light extinction of the order of 20% during May 2013, at the end of the burning season in central-western Africa
    corecore